Scheduling Randomization Protocol to Improve Schedule Entropy for Multiprocessor Real-Time Systems

Author:

Baek HyeongbooORCID,Kang Chang MookORCID

Abstract

Because most tasks on real-time systems are conducted periodically, its execution pattern is highly predictable. While such a property of real-time systems allows developing the strong schedulability analysis tools providing high analytical capability, it also leads that security attackers could analyze the predictable execution patterns of real-time systems and use them as attack surfaces. Among the few approaches to foil such a timing-inference security attack, TaskShuffler as a schedule randomization protocol received considerable attention owing to its simplicity and applicability. However, the existing TaskShuffler is only applicable to uniprocessor platforms, where the task execution pattern is quite simple to analyze when compared to multiprocessor platforms. In this study, we propose a new schedule randomization protocol for real-time systems on symmetry multiprocessor platforms where all processors are composed of the same architecture, which extends the existing TaskShuffler initially designed for uniprocessor platforms.

Funder

Incheon National University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoK: Security in Real-Time Systems;ACM Computing Surveys;2024-04-25

2. Work-in-Progress: Victim-Aware Scheduling for Robust Operations in Safety-Critical Systems;2022 IEEE Real-Time Systems Symposium (RTSS);2022-12

3. Indistinguishability Prevents Scheduler Side Channels in Real-Time Systems;Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security;2021-11-12

4. Security and Reliability of Safety-Critical RTOS;SN Computer Science;2021-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3