Abstract
Applying the aliasing asymptotics on the coefficients of the Chebyshev expansions, the convergence rate of Clenshaw–Curtis quadrature for Jacobi weights is presented for functions with algebraic endpoint singularities. Based upon a new constructed symmetric Jacobi weight, the optimal error bound is derived for this kind of function. In particular, in this case, the Clenshaw–Curtis quadrature for a new constructed Jacobi weight is exponentially convergent. Numerical examples illustrate the theoretical results.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献