Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance

Author:

Wang ChenORCID,Qiao Zijian,Huang Zhangjun,Xu Junchen,Fang ShitongORCID,Zhang Cailiang,Liu Jinjun,Zhu Ronghua,Lai ZhihuiORCID

Abstract

As a powerful feature extraction tool, a convolutional neural network (CNN) has strong adaptability for big data applications such as bearing fault diagnosis, whereas the classification performance is limited when the quality of raw signals is poor. In this paper, stochastic resonance (SR), which provides an advanced feature enhancement approach for weak signals with strong background noise, is introduced as a data pre-processing method for the CNN to improve its classification performance. First, a multiparameter adjusting bistable Duffing system that can achieve SR under large-parameter weak signals is introduced. A hybrid optimization algorithm (HOA) combining the genetic algorithm (GA) and the simulated annealing (SA) is proposed to adaptively obtain the optimized parameters and output signal-to-noise ratio (SNR) of the Duffing system. Therefore, the data optimization based on the multiparameter-adjusting SR of Duffing system can be realized. An SR-based mapping method is further proposed to convert the outputs of the Duffing system into grey images, which can be further processed by a normal CNN with batch normalization (BN) layers and dropout layers. After verifying the feasibility of the HOA in multiparameter optimization of the Duffing system, the bearing fault data set from the CWRU bearing data center was processed by the proposed fault enhancement classification and identification method. The research showed that the weak features of the bearing signals could be enhanced significantly through the adaptive multiparameter optimization of SR, and classification accuracies for 10 categories of bearing signals could achieve 100% and those for 20 categories could achieve more than 96.9%, which is better than other methods. The influences of the population number on the classification accuracies and calculation time were further studied, and the feature map and network visualization are presented. It was demonstrated that the proposed method can realize high-performance fault enhancement classification and identification.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Zhejiang Provincial Natural Science Foundation of China

Research Program of Tianjin Education Commission

Ningbo Science and Technology Major Project

Natural Science Foundation of Shenzhen University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3