GCP-Based Automated Fine Alignment Method for Improving the Accuracy of Coordinate Information on UAV Point Cloud Data

Author:

Choi Yeongjun,Park Suyeul,Kim SeokORCID

Abstract

3D point cloud data (PCD) can accurately and efficiently capture the 3D geometric information of a target and exhibits significant potential for construction applications. Although one of the most common approaches for generating PCD is the use of unmanned aerial vehicles (UAV), UAV photogrammetry-based point clouds are erroneous. This study proposes a novel framework for automatically improving the coordinate accuracy of PCD. Image-based deep learning and PCD analysis methods are integrated into a framework that includes the following four phases: GCP (Ground Control Point) detection, GCP global coordinate extraction, transformation matrix estimation, and fine alignment. Two different experiments, as follows, were performed in the case study to validate the proposed framework: (1) experiments on the fine alignment performance of the developed framework, and (2) performance and run time comparison between the fine alignment framework and common registration algorithms such as ICP (Iterative Closest Points). The framework achieved millimeter-level accuracy for each axis. The run time was less than 30 s, which indicated the feasibility of the proposed framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3