Extracting Objects’ Spatial–Temporal Information Based on Surveillance Videos and the Digital Surface Model

Author:

Han Shijing,Dong XiaoruiORCID,Hao Xiangyang,Miao Shufeng

Abstract

Surveillance systems focus on the image itself, mainly from the perspective of computer vision, which lacks integration with geographic information. It is difficult to obtain the location, size, and other spatial information of moving objects from surveillance systems, which lack any ability to couple with the geographical environment. To overcome such limitations, we propose a fusion framework of 3D geographic information and moving objects in surveillance video, which provides ideas for related research. We propose a general framework that can extract objects’ spatial–temporal information and visualize object trajectories in a 3D model. The framework does not rely on specific algorithms for determining the camera model, object extraction, or the mapping model. In our experiment, we used the Zhang Zhengyou calibration method and the EPNP method to determine the camera model, YOLOv5 and deep SORT to extract objects from a video, and an imaging ray intersection with the digital surface model to locate objects in the 3D geographical scene. The experimental results show that when the bounding box can thoroughly outline the entire object, the maximum error and root mean square error of the planar position are within 31 cm and 10 cm, respectively, and within 10 cm and 3 cm, respectively, in elevation. The errors of the average width and height of moving objects are within 5 cm and 2 cm, respectively, which is consistent with reality. To our knowledge, we first proposed the general fusion framework. This paper offers a solution to integrate 3D geographic information and surveillance video, which will not only provide a spatial perspective for intelligent video analysis, but also provide a new approach for the multi-dimensional expression of geographic information, object statistics, and object measurement.

Funder

university research team development fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3