Spectral Index for Mapping Topsoil Organic Matter Content Based on ZY1-02D Satellite Hyperspectral Data in Jiangsu Province, China

Author:

Yang YayuORCID,Shang KunORCID,Xiao Chenchao,Wang Changkun,Tang Hongzhao

Abstract

Estimation of soil organic matter content (SOMC) is essential for soil quality evaluation. Compared with traditional multispectral remote sensing for SOMC mapping, the distribution of SOMC in a certain area can be obtained quickly by using hyperspectral remote sensing data. The Advanced Hyper-Spectral Imager (AHSI) onboard the ZY1-02D satellite can simultaneously obtain spectral information in 166 bands from visible (400 nm) to shortwave infrared (2500 nm), providing an important data source for SOMC mapping. In this study, SOMC-related spectral indices (SIs) suitable for this satellite were analyzed and evaluated in Shuyang County, Jiangsu Province. A series of SIs were constructed for the bare soil and vegetation-covered (mainly rice crops and tree seedlings) areas by combining spectral transformations (such as reciprocal and square root) and dual-band index formulas (such as ratio and difference), respectively. The optimal SIs were determined based on Pearson’s correlation coefficient (ρ) and satellite data quality, and applied to SOMC level mapping and estimation. The results show that: (1) The SI with the highest ρ in the bare soil area is the ratio index of original reflectance at 654 and 679 nm (OR-RI(654,679)), whereas the SI in the vegetation area is the square root of the difference between the reciprocal reflectance at 551 and 1998 nm (V-RR-DSI(551,1998)); (2) the spatial distribution trend of regional SOMC results obtained by linear regression models of OR-RI(654,679) and V-RR-DSI(551,1998) is consistent with the samples; (3) based on the optimal SIs, support vector machine and tree ensembles were used to predict the SOMC of bare soil and vegetation-covered areas of Shuyang County, respectively. The determination coefficient of the soil–vegetation combined prediction results is 0.775, the root mean square error is 3.72 g/kg, and the residual prediction deviation is 2.12. The results show that the proposed SIs for ZY1-02D satellite hyperspectral data are of great potential for SOMC mapping.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3