Tour-Route-Recommendation Algorithm Based on the Improved AGNES Spatial Clustering and Space-Time Deduction Model

Author:

Zhou XiaoORCID,Tian JiangpengORCID,Su MingzhanORCID

Abstract

This study designed a tour-route-planning and recommendation algorithm that was based on an improved AGNES spatial clustering and space-time deduction model. First, the improved AGNES tourist attraction spatial clustering algorithm was created. Based on the features and spatial attributes, city tourist attraction clusters were formed, in which the tourist attractions with a high degree of correlation among attributes were gathered into the same cluster. It formed the precondition for searching tourist attractions that would match tourist interests. Using tourist attraction clusters, this study also developed a tourist attraction reachability model that was based on tourist-interest data and geospatial relationships to confirm each tourist attraction’s degree of correlation to tourist interests. A dynamic space-time deduction algorithm that was based on travel time and cost allowances was designed in which the transportation mode, time, and costs were set as the key factors. To verify the proposed algorithm, two control algorithms were chosen and tested against the proposed algorithm. Our results showed that the proposed algorithm had better results for tour-route planning under different transportation modes as compared to the controls. The proposed algorithm not only considered time and cost allowances, but it also considered the shortest traveling distance between tourist attractions. Therefore, the tourist attractions and tour routes that were suggested not only met tourist interests, but they also conformed to the constraint conditions and lowered the overall total costs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Military “Double Key” construction project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference42 articles.

1. Finding Groups in Data: An Introduction to Cluster Analysis;Kaufman,2009

2. Application of Agglomerative and Partitional Algorithms for the Study of the Phenomenon of the Collaborative Economy within the Tourism Industry;Rocha;J. Autom. Mob. Robot. Intell. Syst.,2020

3. Using ontology-based clustering to understand the push and pull factors for British tourists visiting a Mediterranean coastal destination

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3