A Point-of-Interest Recommendation Method Exploiting Sequential, Category and Geographical Influence

Author:

Wang XicanORCID,Liu Yanheng,Zhou XuORCID,Wang Xueying,Leng Zhaoqi

Abstract

Point of interest (POI) recommendation as an important service in location-based social networks has developed rapidly, which can help users find more interesting unknown locations and facilitate service providers to provide users with more accurate notifications or advertisements. Some existing work has addressed the data sparsity problem of collaborative filtering by incorporating contextual information into the model. However, they ignore the sequence relationship contained in the user’s historical check-in records, which makes it difficult to accurately model the user’s preference and affects the final recommendation results. To acquire users’ preference for a location more accurately, this paper proposes a new POI recommendation framework exploiting sequential, category, and geographical influence. Firstly, we obtain the latent vector of POI and the latent vector of the user’s preference for POI from the user’s check-in sequence based on the word embedding model. Next, a virtual common access sequence for users is constructed according to the user’s check-ins, a new similarity computation method is present combining category differentiation and POI latent vector. Then, we apply it to the collaborative filtering framework to get the user’s behavioral preference probability of POI. In addition, the kernel density estimation method is employed to get the user’s geographical preference probability of POI by considering the geographical influence. Finally, the POI recommendation list is obtained by the weighted fusion of the two users’ preference probability to improve the performance of the POI recommendation. Experimental results on two datasets indicate that the proposed method has better performance in terms of three evaluation metrics than the other five POI recommendation methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3