A Deep Learning-Based Lightweight Model for the Detection of Marine Fishes

Author:

Wu Fei123,Zhang Yitao23,Wang Lang23,Hu Qiu23ORCID,Fan Shengli23,Cai Weiming23

Affiliation:

1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China

2. Signal Intelligence Detection and Life Behavior Perception Institute, NingboTech University, Ningbo 315100, China

3. Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment, Ningbo 315100, China

Abstract

The species and population size of marine fish are important for maintaining the ecological environment and reflecting climate change. Traditional fish detection methods mainly rely on manual or traditional computer vision, which has disadvantages such as complex design, low detection accuracy, and poor generalization. The widespread use of ocean observation systems has accumulated a large number of images and videos, which makes the application of deep learning on marine fish detection possible. In this paper, a real-time high-precision fish detection algorithm based on YOLOv5s is constructed. Considering the enhancement of the channel representation and spatial interaction ability of the model, the attention mechanism and gated convolution are introduced, respectively, and GhostNet is introduced to lighten the model. Through a series of model comparisons, two improved models, S-Head-Ghost-Fish9 and S-SE-HorBlock-Head-Ghost-Fish9, are finally obtained. Compared with the original model, in terms of model size, the former reduces by 19% and the latter increases by 9.5%; in terms of computation, the former reduces by 15.7% and the latter reduces by 3.1%; in terms of detection speed, both take about 17 ms to detect a single image, and both can meet the real-time detection requirements; in terms of detection accuracy, the former improves by 3% and the latter by 3.6%. Compared with the latest detection algorithms of YOLOv6 and YOLOv8, the detection accuracy is slightly lower than 1%, but the model size and computation amount are only 1/3 to 1/2 of them. The improved models can help assess the population size and growth of the fish, which is of great significance in maintaining the stability of the fish population.

Funder

National Natural Science Foundation of China

Ningbo Youth Science and Technology Innovation Leading Talent Project

Ningbo Public Welfare Research Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3