Developing Functional Recharge Systems to Control Saltwater Intrusion via Integrating Physical, Numerical, and Decision-Making Models for Coastal Aquifer Sustainability

Author:

Miky Yehia1ORCID,Issa Usama Hamed23ORCID,Mahmod Wael Elham43ORCID

Affiliation:

1. Department of Geomatics, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Civil Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt

3. Department of Civil Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia

4. Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt

Abstract

Controlling the hydraulic heads along a coastal aquifer may help to effectively manage saltwater intrusion, improve the conventional barrier’s countermeasure, and ensure the coastal aquifer’s long-term viability. This study proposed a framework that utilizes a decision-making model (DMM) by incorporating the results of two other models (physical and numerical) to determine proper countermeasure components. The physical model is developed to analyze the behavior of saltwater intrusion in unconfined coastal aquifers by conducting two experiments: one for the base case, and one for the traditional vertical barrier. MODFLOW is used to create a numerical model for the same aquifer, and experimental data are used to calibrate and validate it. Three countermeasure combinations, including vertical barrier, surface, and subsurface recharges, are numerically investigated using three model case categories. Category (a) model cases investigate the hydraulic head’s variation along the aquifer to determine the best recharge location. Under categories (b) and (c), the effects of surface and subsurface recharges are studied separately or in conjunction with a vertical barrier. As a pre-set of the DMM, evaluation and classification ratios are created from the physical and numerical models, respectively. The evaluation ratios are used to characterize the model case results, while the classification ratios are used to classify each model case as best or worst. An analytical hierarchy process (AHP) as a DMM is built using the hydraulic head, salt line, repulsion, wedge area, and recharge as selection criteria to select the overall best model case. According to the results, the optimum recharging location is in the length ratio (LR) from 0.45 to 0.55. Furthermore, the DMM supports case3b (vertical barrier + surface recharge) as the best model case to use, with a support percentage of 48%, implying that this case has a good numerical model classification with a maximum repulsion ratio (Rr) of 29.4%, and an acceptable wedge area ratio (WAR) of 1.25. The proposed framework could be used in various case studies under different conditions to assist decision-makers in evaluating and controlling saltwater intrusion in coastal aquifers.

Funder

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3