Numerical Prediction of Ship Resistance Based on Volume of Fluid Implicit Multi-Step Method

Author:

Wang Yu12,Rao Honghua12,Liu Zhengyuan1ORCID,Liu Kaihua1ORCID,Zhou Bo1,Zhang Guiyong1

Affiliation:

1. State Key Lab of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China

2. COSCO Shipping Heavy Industry (Dalian) Co., Ltd., Dalian 116113, China

Abstract

The Volume of Fluid (VOF) method is used in two-phase fluid flow problems of ship hydrodynamic calculations, to capture the motion and distribution of the gas–liquid free surface. To ensure solution stability and accuracy, numerical simulations typically require separate mesh refinement for the free surface or a reduced time step, resulting in a significant increase in solution time. This study aims to compare the drag and vessel attitude change calculations of the VOF implicit multi-step method with the traditional single-step method, and to verify the feasibility of the method in the numerical prediction of ship resistance and flow field analysis. The results show that an implicit multi-step method with a reasonable number of internal iterations could obtain results close to those of the single-step method with a reduced time step, and the error in trim angle was relatively large, about 2%, but the solving time was only about half that of the latter. The method could also capture the shape and location of waves on the hull, especially in the vicinity of the ship, while the distribution of the waves in the far field differed from those in the experiments to some extent.

Funder

National Natural Science Foundation of China

Dalian Innovation Research Team in Key Areas

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3