Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines

Author:

Kim Daekun1ORCID

Affiliation:

1. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA

Abstract

To reduce air pollution worldwide, regulations on exhaust gas emissions from ships are becoming increasingly stringent. One fuel that is being considered as an alternative to replace the heavy fuel oil used in existing ship engines and thereby reduce harmful emissions, such as NOx, SOx, and greenhouse gases, is sulfur-free liquefied petroleum gas (LPG). To assess the viability of this alternative, it is necessary to understand propane reactivity, the main component of LPG, and develop after-treatment devices applicable to LPG engines. This research evaluated the performance of three prototype Pd-based three-way catalysts (TWCs) with varying Pd loadings (6.5, 4.1, and 1.4 g/L), focusing on their effectiveness concerning propane reactivity in LPG engines. For the fresh samples, catalysts with 4.1 g/L Pd demonstrated performance that was comparable to, or even surpassed, those containing 6.5 g/L Pd. Notably, the temperature of 50% conversion (T50) for NO and C3H8 in the fresh Pd-4.1 was lower by 14 °C and 10 °C, respectively, compared to the fresh Pd-6.5 sample, despite having 37% less precious-metal loading. However, after hydrothermal aging at 900 °C for 100 h, the performance of the 4.1 g/L Pd catalyst significantly deteriorated, exhibiting lower efficiency than the 6.5 g/L Pd catalyst. The study also delved into various probe reactions, including the water–gas shift and propane steam reforming. Advanced analytical techniques, such as N2 physisorption and scanning transmission electron microscopy, were employed to elucidate the texture and structural characteristics of the catalyst, providing a comprehensive understanding of its behavior and potential applications. Through this research, within the efforts of the maritime sector to address challenges posed by emission regulations and rising costs associated with precious metals, this study has the potential to contribute to the development of cost-effective emission control solutions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference34 articles.

1. A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines;Ni;Fuel,2020

2. Smith, T.W.P., Jalkanen, J.P., Anderson, B.A., Corbett, J.J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., and Aldous, L. (2015). Third IMO Greenhouse Gas Study 2014, International Maritime Organization.

3. (2023, October 24). DieselNet. IMO Marine Engine Regulations. Available online: https://dieselnet.com/standards/inter/imo.php#other.

4. Investigation of Selective Catalytic Reduction for Control of Nitrogen Oxides in Full-Scale Dairy Energy Production;Camarillo;Appl. Energy,2013

5. A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship;Ryu;J. Korean Soc. Mar. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3