Numerical Study of Turbulent Wake of Offshore Wind Turbines and Retention Time of Larval Dispersion

Author:

Ajmi Souha1,Boutet Martial1,Bennis Anne-Claire1,Dauvin Jean-Claude1ORCID,Pezy Jean-Philippe1ORCID

Affiliation:

1. Morphodynamique Continentale et Côtière (UMR CNRS 6143), Université de Caen (Campus 1), CEDEX, 14000 Caen, France

Abstract

Offshore Wind Farm (OWF) foundations are considered to have a potential impact on the larval dispersion of benthic species. This study focused on OWFs’ impacts on larval dispersion, considering factors such as the foundation type, flow velocity, flow direction, and release type using numerical modelling. At the scale of monopile and gravity-based foundations, a combination of two numerical models was used: the Eulerian model (OpenFOAM), solving the 3D Navier–Stokes equations for computing the hydrodynamics, and the Lagrangian model (Ichthyop), solving the advection–diffusion equation for the larval dispersion simulations. The validation model tests were evaluated with experimental data as a first step of the study. Accurate results were achieved, yielding a Turbulent Kinetic Energy (TKE) Root-Mean-Squared Error (RMSE) in the range of 6.82–8.27 ×10−5kg/m·s2 within the refined mesh, with a coefficient of determination (R2) approaching unity. For the second phase, more-realistic simulations were modelled. Those simulations demonstrated turbulent wakes downstream of the foundations and horseshoe vortex formations near the bottom. A larval dispersion was simulated using passive particles’ motion. Vertical flumes in the wake with particles experiencing both upward and downward motions, impacting the fall velocities of the particles, were observed. The influence of gravity-based foundations might lead to a stepping-stone effect with a retention time of up to 9 min, potentially allowing the settlement of competent larvae. In a similar geometry with an angular spring tide velocity, 0.4% of particles were trapped.

Funder

Region Normandy

Agency for the Environment and Energy Management

University of Caen Normandy

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3