Affiliation:
1. Civil Engineering Department, Kuwait University, PO Box 5969, Kuwait City 13060, Kuwait
Abstract
Creating an efficient model for predicting sea level fluctuations is essential for climate change research. This study examined the effectiveness of utilizing Artificial Neural Networks (ANNs), particularly the recurrent network approach. ANNs were chosen for their capacity to learn from extensive and intricate data and their ability to handle nonlinear correlations. The Long Short-Term Memory (LSTM) algorithm was employed to fill data gaps and predict future sea level records in the Arabian Gulf, especially in Mina Salman. The results were promising, with LSTM successfully filling a 6-year data gap while maintaining low Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. The first phase of the model yielded a RMSE value of 63.4 mm and a MAPE value of 3.14%. The same approach was used to retrain the model with a mix of real and predicted values, preserving historical patterns and yearly rates with an RMSE of 66.5 mm and a MAPE of 3.07%. These findings highlight LSTM’s advantages when considering only historical information for predicting the future sea level changes. The research provides valuable insights into predicting sea level changes in regions with limited field data, such as the Arabian Gulf, and emphasizes the potential for further research to enhance sea level prediction models through improved optimization techniques.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference25 articles.
1. Wuebbles, D., Fahey, D., Hibbard, K., Dokken, D., Stewart, B., and Maycock, T. (2017). Climate Science Special Report: Fourth National Climate Assessment, U.S. Global Change Research Program.
2. Sea level rise in the north-western part of the Arabian Gulf;Alothman;J. Geodyn.,2014
3. The Gulf: A young sea in decline;Sheppard;Mar. Pollut. Bull.,2010
4. Almajed, N., Mohammadi, H., Alghadban, A., and Alawadi, A. (2000). Regional Report of the State of the Marine Environment, Regional Organization for the Protection of the Marine Environment (ROPME). [1st ed.]. Available online: https://ropme.org/?page_id=2573.
5. Hsieh, C.M., Chou, D., and Hsu, T.W. (2022). Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability, 14.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献