Detection of Small Objects in Side-Scan Sonar Images Using an Enhanced YOLOv7-Based Approach

Author:

Zhang Feihu1ORCID,Zhang Wei1,Cheng Chensheng1,Hou Xujia1,Cao Chun1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Deep learning-based object detection methods have demonstrated remarkable effectiveness across various domains. Recently, there has been growing interest in applying these techniques to underwater environments. Conventional optical imaging methods face severe limitations when operating in underwater conditions, restricting their ability to identify objects with good visibility and at close distances. Consequently, side-scan sonar (SSS) has emerged as a common equipment choice for underwater detection due to its compatibility with the characteristics of sound waves in water. This paper introduces a novel method, termed the Enhanced YOLOv7-Based Approach, for detecting small objects in SSS images. Building upon the widely-adopted YOLOv7 method, the proposed approach incorporates several enhancements aimed at improving detection accuracy. First, a dedicated detection layer tailored for small objects is added to the original network architecture. Additionally, two attention mechanisms are integrated within the backbone and neck components of the network, respectively, to strengthen the network’s focus on object features. Finally, the network features are recombined based on the BiFPN structure. Experimental results demonstrate that the proposed method outperforms mainstream object detection algorithms. In comparison to the original YOLOv7 network, it achieves a Precision of 95.5%, indicating a significant improvement of 4.8%. Moreover, its Recall reaches 87.0%, representing an enhancement of 5.1%, while the mean Average Precision (mAP) at an IoU threshold of 0.5 (mAP@.5) reaches 86.9%, reflecting a 6.7% improvement. Furthermore, the mAP@.5:.95 reaches 55.1%, a 4.8% enhancement. Therefore, the method presented in this paper enhances the performance of YOLOv7 for object detection in SSS images, providing a fresh perspective on small object detection based on SSS images and contributing to the advancement of underwater detection techniques.

Funder

National Natural Science Foundation of China

Graduate Innovation Seed Fund of Northwestern Polytechnical University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3