Ship Detection under Low-Visibility Weather Interference via an Ensemble Generative Adversarial Network

Author:

Chen Xinqiang1ORCID,Wei Chenxin1,Xin Zhengang1ORCID,Zhao Jiansen2ORCID,Xian Jiangfeng1ORCID

Affiliation:

1. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

Maritime ship detection plays a crucial role in smart ships and intelligent transportation systems. However, adverse maritime weather conditions, such as rain streak and fog, can significantly impair the performance of visual systems for maritime traffic. These factors constrain the performance of traffic monitoring systems and ship-detection algorithms for autonomous ship navigation, affecting maritime safety. The paper proposes an approach to resolve the problem by visually removing rain streaks and fog from images, achieving an integrated framework for accurate ship detection. Firstly, the paper employs an attention generation network within an adversarial neural network to focus on the distorted regions of the degraded images. The paper also utilizes a contextual encoder to infer contextual information within the distorted regions, enhancing the credibility of image restoration. Secondly, a weighted bidirectional feature pyramid network (BiFPN) is introduced to achieve rapid multi-scale feature fusion, enhancing the accuracy of maritime ship detection. The proposed GYB framework was validated using the SeaShip dataset. The experimental results show that the proposed framework achieves an average accuracy of 96.3%, a recall of 95.35%, and a harmonic mean of 95.85% in detecting maritime traffic ships under rain-streak and foggy-weather conditions. Moreover, the framework outperforms state-of-the-art ship detection methods in such challenging weather scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3