Feature-Based Place Recognition Using Forward-Looking Sonar

Author:

Gaspar Ana Rita1ORCID,Matos Aníbal1ORCID

Affiliation:

1. Faculty of Engineering - University of Porto (FEUP), Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200 Porto, Portugal

Abstract

Some structures in the harbour environment need to be inspected regularly. However, these scenarios present a major challenge for the accurate estimation of a vehicle’s position and subsequent recognition of similar images. In these scenarios, visibility can be poor, making place recognition a difficult task as the visual appearance of a local feature can be compromised. Under these operating conditions, imaging sonars are a promising solution. The quality of the captured images is affected by some factors but they do not suffer from haze, which is an advantage. Therefore, a purely acoustic approach for unsupervised recognition of similar images based on forward-looking sonar (FLS) data is proposed to solve the perception problems in harbour facilities. To simplify the variation of environment parameters and sensor configurations, and given the need for online data for these applications, a harbour scenario was recreated using the Stonefish simulator. Therefore, experiments were conducted with preconfigured user trajectories to simulate inspections in the vicinity of structures. The place recognition approach performs better than the results obtained from optical images. The proposed method provides a good compromise in terms of distinctiveness, achieving 87.5% recall considering appropriate constraints and assumptions for this task given its impact on navigation success. That is, it is based on a similarity threshold of 0.3 and 12 consistent features to consider only effective loops. The behaviour of FLS is the same regardless of the environment conditions and thus this work opens new horizons for the use of these sensors as a great aid for underwater perception, namely, to avoid degradation of navigation performance in muddy conditions.

Funder

FCT—Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3