Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping

Author:

Johansson MarkusORCID,Saarni SaijaORCID,Sorvari JouniORCID

Abstract

The purpose of this study was to identify relationships between meteorological and hydrological observations and sediment flux rate changes, in order to better understand catchment dynamics. The meteorological and hydrological observations included local air temperature, wind speed, water temperature, and ice cover, while the sediment flux rate was observed in the lake basin using a modified sediment trap technique. This study demonstrates the advantages of a new online methodology applied in conventional sediment trapping to obtain flux rate information with daily resolution. A prototype of a high-resolution online sediment trap was tested in Savilahti Bay, Lake Kallavesi, eastern Finland, during the period from 22 October 2017 to 6 October 2018. The daily resolutions of meteorological, hydrological, and sediment flux rate data were analyzed using statistical methods. The results indicate relationships between temperature, precipitation, wind speed, and sediment flux rate, but the urban site also showed erosional changes due to anthropogenic land use. Sediment flux ceased during winter season and spring floods were recorded as pronounced peaks in sediment flux, while the growing season showed generally higher sediment accumulation rates. This research also provides valuable information on the catchment response to short-term weather events. The influence of a storm led to larger sediment flux for several days. The importance of wind speed and frost formation on sedimentation, which has been difficult to address due to trap deployment times of typically several months, is now supported. Used together with varved sediment archives, online sediment trapping will facilitate the interpretation of paleoclimatic proxy records and modeling of detailed weather and erosion conditions that are related to climate change.

Publisher

MDPI AG

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3