Bioconversion Pathway of CO2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir

Author:

Yang Guang-Chao,Zhou Lei,Mbadinga Serge,Gu Ji-Dong,Mu Bo-ZhongORCID

Abstract

Transformation of CO2 in both carbon capture and storage (CCS) to biogenic methane in petroleum reservoirs is an attractive and promising strategy for not only mitigating the greenhouse impact but also facilitating energy recovery in order to meet societal needs for energy. Available sources of petroleum in the reservoirs reduction play an essential role in the biotransformation of CO2 stored in petroleum reservoirs into clean energy methane. Here, the feasibility and potential on the reduction of CO2 injected into methane as bioenergy by indigenous microorganisms residing in oilfields in the presence of the fermentative metabolite ethanol were assessed in high-temperature petroleum reservoir production water. The bio-methane production from CO2 was achieved in enrichment with ethanol as the hydrogen source by syntrophic cooperation between the fermentative bacterium Synergistetes and CO2-reducing Methanothermobacter via interspecies hydrogen transfer based upon analyses of molecular microbiology and stable carbon isotope labeling. The thermodynamic analysis shows that CO2-reducing methanogenesis and the methanogenic metabolism of ethanol are mutually beneficial at a low concentration of injected CO2 but inhibited by the high partial pressure of CO2. Our results offer a potentially valuable opportunity for clean bioenergy recovery from CCS in oilfields.

Funder

National Natural Science Foundation of China

Research Foundation of Shanghai

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3