A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City

Author:

Aymen Flah,Mahmoudi Chokri

Abstract

Electric Vehicles (EVs) have emerged rapidly across the globe as a powerful eco-friendly initiative that if integrated well with an urban environment could be iconic for the city’ host’s commitment to sustainable mobility and be a key ingredient of the smart city concept. This paper examines ways that will help us to develop a better understanding of how EVs can achieve energy use optimization and be connected with a smart city. As a whole, the present study is based on an original idea that would be useful in informing policy-makers, automotive manufacturers and transport operators of how to improve and embrace better EV technologies in the context of smart cities. The proposed approach is based on vehicles and buildings communication for sharing some special information related to the vehicle status and to the road condition. EVs can share their own information related to the energy experience on a specific path. This information can be gathered in a gigantic database and used for managing the power inside these vehicles. In this field, this paper exposes a new approach to power management inside an electric vehicle based on bi-communication between vehicles and buildings. The principle of this method is established on two sections; the first one is related to vehicles’ classification and the second one is attached to the buildings’ recommendation, according to the car position. The classification problem is resolved using the support vector classification method. The recommendation phase is resolved using the artificial intelligence principle and the neural network was employed, for giving the best decision. The optimal decision will be calculated inside the building, according to its position and using the old vehicle’s data, and transferred to the coming vehicle, for optimizing its energy consumption method in the corresponding building zone. Different possibilities and situations were discussed in this approach. The proposed power management methodology was tested and validated using Simulink/Matlab tool. Results related to the battery state of charge and to the consumed energy were compared at the end of this work, for showing the efficiency of this approach.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3