Rheological Issues of Phase Change Materials Obtained by the Complex Coacervation of Butyl Stearate in Poly Methyl Methacrylate Membranes

Author:

Bendic Vasile,Dobrotă Dan,Dobrescu Tiberiu,Enciu George,Pascu Nicoleta-Elisabeta

Abstract

The research started from the fact that the coacervation process represents the process of formation of macromolecular aggregates after separation from the phase that takes place in a homogeneous polymer solution as a result of the addition of a non-solvent. This process is very complex, and takes place in several stages of emulsification technology. The first step of the research created a sample through an encapsulation process of complex coacervation, followed by the creation of three different samples with specific emulsification technologies. Each resulting sample and step of emulsification went through rheological analysis, including the development of evolutions of the complex viscosity, loss module and respective storage module. When we analyzed the rheological properties of each sample at different emulsification stages, we reached the conclusion that, at the moment when the polymerization reaction develops the methyl methacrylate (MMA), the loss modules of the samples were stronger than the storage modules. In this context, the emulsification technology strongly influenced the process of forming the polymethyl methacrylate (PMMA) layer over the butyl stearate particles. In addition, in order to obtain the corresponding microcapsules, it was preferable for the butyl stearate particles covered with MMA to be vigorously stirred in a short period of time, under 250 s, because after that the polymerization process of the MMA on the surface of the particles begins. When producing microcapsules, it is very important that the whole process of emulsification be accompanied by rigorous stirring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3