HyFlow—A Hybrid Load Flow-Modelling Framework to Evaluate the Effects of Energy Storage and Sector Coupling on the Electrical Load Flows

Author:

Böckl Benjamin,Greiml Matthias,Leitner Lukas,Pichler Patrick,Kriechbaum Lukas,Kienberger Thomas

Abstract

HyFlow is a grid-based multi-energy system (MES) modelling framework. It aims tomodel the status quo of current energy systems, future scenarios with a high share of fluctuatingenergy sources or additional consumers like electric vehicles, and to compare solution strategies ifcertain parts of the infrastructure are congested. In order to evaluate the congestion limits and thefeasibility and suitability of solution strategies (e.g., energy storage, sector coupling technologies,demand response (DR)), load flow calculations of all three main grid-bound energy carriers areimplemented in one single modelling framework. In addition to the implemented load flow models,it allows the interaction of these grids with the use of hybrid elements. This measure enables aproper assessment of future scenarios, not only for the infrastructure of one energy carrier, but forthe overall energy system. The calculation workflow of HyFlow, including the implemented loadflow calculations, as well as the implementation of the flexibility options, is described in detail inthe methodology section. To demonstrate the wide range of applicability of HyFlow with differentspatial ranges, two case studies referring to current research problems are presented: a city and aregion surrounding the mentioned city. The calculations for the mentioned case studies areperformed for three levels. A “status quo” level, a “high-stress” level with added fluctuatingenergy sources and consumers, and an “improvement” level, where flexibility options areintroduced to the system. The effect of the flexibility options on future energy grids is, therefore,analyzed and evaluated. A wide variety of evaluation criteria can be selected. For example, themaximum load of certain power lines, the self-sufficiency of the overall system, the total transportlosses or the total energy consumption.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3