Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region

Author:

Cavalcante Júnior Roberto,Vasconcelos Freitas Marcos,da Silva Neilton,de Azevedo Filho Franklin

Abstract

Semi-arid regions have historically suffered from low water availability. In addition, the increasing frequency and intensity of extreme weather events credited to global climate change has made it increasingly clear that among the challenges faced by society water resource management is extremely necessary. In this context, desalination based on renewable energy resources integrated with production systems that make use of the waste resulting from this process becomes a socio-environmentally indicated alternative to expand existing supply strategies and sustainable water use in isolated locations, and/or areas distant from large urban centers, thus addressing local potential and reducing environmental impacts. This study assesses the use of Photovoltaic Solar Power Plants (PSPPs), as well as of residues generated in a Brackish Water Reverse Osmosis System (BWRO), in productive units linked to fish and family farming. This is as an alternative way to reduce water vulnerability in the Brazilian semi-arid area (BS), adhering to climate change adaptation measures in the light of Brazilian public policies through the Freshwater Program (Programa Água Doce—PAD), which aims to promote access to good quality water to approximately 500 thousand people in the Brazilian semi-arid region.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference102 articles.

1. The United Nations World Water Development Report 2015: Water for a Sustainable World,2015

2. World Population Prospects;Melorose,2015

3. World Energy Outlook 2015,2015

4. AR5 Climate Change 2014: Impacts, Adptation, and Vulnerabilityhttps://www.ipcc.ch/report/ar5/wg2/

5. Conjuntura dos recursos hídricos no Brasil 2017: Relatório pleno;Conjunt. Recur. Hídricos Bras.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3