Selective Laser Melting of Pre-Alloyed NiTi Powder: Single-Track Study and FE Modeling with Heat Source Calibration

Author:

Chernyshikhin Stanislav V.ORCID,Firsov Denis G.ORCID,Shishkovsky Igor V.ORCID

Abstract

Unique functional properties such as the low stiffness, superelasticity, and biocompatibility of nickel–titanium shape-memory alloys provide many applications for such materials. Selective laser melting of NiTi enables low-cost customization of devices and the manufacturing of highly complex geometries without subsequent machining. However, the technology requires optimization of process parameters in order to guarantee high mass density and to avoid deterioration of functional properties. In this work, the melt pool geometry, surface morphology, formation mode, and thermal behavior were studied. Multiple combinations of laser power and scanning speed were used for single-track preparation from pre-alloyed NiTi powder on a nitinol substrate. The experimental results show the influence of laser power and scanning speed on the depth, width, and depth-to-width aspect ratio. Additionally, a transient 3D FE model was employed to predict thermal behavior in the melt pool for different regimes. In this paper, the coefficients for a volumetric double-ellipsoid heat source were calibrated with bound optimization by a quadratic approximation algorithm, the design of experiments technique, and experimentally obtained data. The results of the simulation reveal the necessary conditions of transition from conduction to keyhole mode welding. Finally, by combining experimental and FE modeling results, the optimal SLM process parameters were evaluated as P = 77 W, V = 400 mm/s, h = 70 μm, and t = 50 μm, without printing of 3D samples.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3