Facile Synthesis of BiVO4@ZIF−8 Composite with Heterojunction Structure for Photocatalytic Wastewater Treatment

Author:

Guo Runjiang,Xing Yurui,Liu Mengqian,Bai Tanglong,Pu Chaodan,Zhang HongtiORCID

Abstract

Water pollution has always been a serious problem across the world; therefore, facile pollutant degradation via light irradiation has been an attractive issue in the field of environmental protection. In this study, a type of Zn-based metal–organic framework (ZIF−8)-wrapped BiVO4 nanorod (BiVO4@ZIF−8) with high efficiency for photocatalytic wastewater treatment was synthesized through a two-step hydrothermal method. The heterojunction structure of BiVO4@ZIF−8 was confirmed by morphology characterization. Due to the introduction of mesoporous ZIF−8, the specific surface area reached up to 304.5 m2/g, which was hundreds of times larger than that of pure BiVO4 nanorods. Furthermore, the band gap of BiVO4@ZIF−8 was narrowed down to 2.35 eV, which enabled its more efficient utilization of visible light. After irradiation under visible light for about 40 min, about 80% of rhodamine B (RhB) was degraded, which was much faster than using pure BiVO4 or other BiVO4-based photocatalysts. The synergistic photocatalysis mechanism of BiVO4@ZIF−8 is also discussed. This study might offer new pathways for effective degradation of wastewater through facile design of novel photocatalysts.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3