Analysis and Optimization of Dimensional Accuracy and Porosity of High Impact Polystyrene Material Printed by FDM Process: PSO, JAYA, Rao, and Bald Eagle Search Algorithms

Author:

Chandrashekarappa Manjunath Patel GowdruORCID,Chate Ganesh RaviORCID,Parashivamurthy VineethORCID,Kumar Balakrishnamurthy Sachin,Bandukwala Mohd Amaan Najeeb,Kaisar Annan,Giasin KhaledORCID,Pimenov Danil YurievichORCID,Wojciechowski SzymonORCID

Abstract

High impact polystyrene (HIPS) material is widely used for low-strength structural applications. To ensure proper function, dimensional accuracy and porosity are at the forefront of industrial relevance. The dimensional accuracy cylindricity error (CE) and porosity of printed parts are influenced mainly by the control variables (layer thickness, shell thickness, infill density, print speed of the fused deposition modeling (FDM) process). In this study, a central composite design (CCD) matrix was used to perform experiments and analyze the complete insight information of the process (control variables influence on CE and porosity of FDM parts). Shell thickness for CE and infill density for porosity were identified as the most significant factors. Layer thickness interaction with shell thickness, infill density (except for CE), and print speed were found to be significant for both outputs. The interaction factors, i.e., shell thickness and infill density, were insignificant (negligible effect) for both outputs. The models developed produced a better fit for regression with an R2 equal to 94.56% for CE, and 99.10% for porosity, respectively. Four algorithms (bald eagle search optimization (BES), particle swarm optimization (PSO), RAO-3, and JAYA) were applied to determine optimal FDM conditions while examining six case studies (sets of weights assigned for porosity and CE) focused on minimizing both CE and porosity. BES and RAO-3 algorithms determined optimal conditions (layer thickness: 0.22 mm; shell thickness: 2 mm; infill density: 100%; print speed: 30 mm/s) at a reduced computation time equal to 0.007 s, differing from JAYA and PSO, which resulted in an experimental CE of 0.1215 mm and 2.5% of porosity in printed parts. Consequently, BES and RAO-3 algorithms are efficient tools for the optimization of FDM parts.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3