Accumulation and Biotransformation of Dinophysis Toxins by the Surf Clam Mesodesma donacium

Author:

Blanco Juan,Álvarez Gonzalo,Rengel José,Díaz Rosario,Mariño Carmen,Martín Helena,Uribe EduardoORCID

Abstract

Surf clams, Mesodesma donacium, were shown to accumulate toxins from Dinophysis acuminata blooms. Only pectenotoxin 2 (PTX2) and some of its derivatives were found, and no toxins from the okadaic acid group were detected. PTX2 seems to be transformed to PTX2 seco-acid (PTX2sa), which was found in concentrations more than ten-fold those of PTX2. The seco-acid was transformed to acyl-derivatives by esterification with different fatty acids. The estimated amount of these derivatives in the mollusks was much higher than that of PTX2. Most esters were originated by even carbon chain fatty acids, but some originated by odd carbon number were also found in noticeable concentrations. Some peaks of toxin in the bivalves did not coincide with those of Dinophysis abundance, suggesting that there were large differences in toxin content per cell among the populations that developed throughout the year. The observed depuration (from the digestive gland) was fast (more than 0.2 day−1), and was faster for PTX2 than for PTX2sa, which in turn was faster than that of esters of PTX2sa. PTX2 and PTX2sa were distributed nearly equally between the digestive gland and the remaining tissues, but less than 5% of the palmytoyl-esters were found outside the digestive gland.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference55 articles.

1. Marea roja en la región de Magallanes;Guzmán;Pub. Inst. Patagon. Ser. Monogr.,1975

2. DSP outbreak in Chilean fjords;Lembeye,1993

3. Determination of okadaic acid and dinophysistoxin-1 in mussels from Chile, Italy and Ireland;Zhao,1993

4. Second IOC Regional Science Planning Workshop on Harmful Algal Blooms in South America,1995

5. First report of diarrhetic shellfish toxins in Magellanic fjord, Southern Chile;Uribe;J. Shellfish Res.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3