Application of Physical Methods for the Detection of a Thermally Degraded Recycled Material in Plastic Parts Made of Polypropylene Copolymer

Author:

Běhálek LubošORCID,Dobránsky JozefORCID,Pollák MartinORCID,Borůvka MartinORCID,Brdlík Pavel

Abstract

The paper deals with the possibility of applying physical methods to detect a thermally degraded recycled material in plastic parts made of polypropylene. Standard methods of evaluating the mechanical properties of the material under static tensile and bending stress, as well as under dynamic impact stress using the Charpy method, were used for the experimental measurements. The rheological properties of materials were monitored using a method involving measuring the melt flow index, while their thermal properties and oxidative stability were monitored using differential scanning calorimetry. Based on the methods used, it can be clearly stated that the most suitable technique for detecting thermally degraded recycled material in polypropylene is the method involving establishing the melt flow index. The bending test seems to be the most suitable method for detecting recycled material by measuring the material’s mechanical properties. Similarly to the melt volume flow rate (MVR) method, it was possible to unambiguously detect the presence of even a small amount of recycled material in the whole from measuring the material’s bending properties. It is clear from the results that in the short term, there may be no change in the useful properties of the parts, but in the long term the presence of degraded recycled material will have adverse consequences on their lifespan.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3