Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels

Author:

Riech InesORCID,Castro-Montalvo Carlos,Wittersheim Loïs,Giácoman-Vallejos GermánORCID,González-Sánchez Avel,Gamboa-Loira Cinthia,Acosta Milenis,Méndez-Gamboa JoséORCID

Abstract

As the use of photovoltaic installations becomes extensive, it is necessary to look for recycling processes that mitigate the environmental impact of damaged or end-of-life photovoltaic panels. There is no single path for recycling silicon panels, some works focus on recovering the reusable silicon wafers, others recover the silicon and metals contained in the panel. In the last few years, silicon solar cells are thinner, and it becomes more difficult to separate them from the glass, so the trend is towards the recovery of silicon. In this paper, we investigate the experimental conditions to delaminate and recovery silicon in the recycling process, using a combination of mechanical, thermal, and chemical methods. The conditions of thermal treatment to remove the ethylene-vinyl acetate (EVA) layer were optimized to 30 min at 650 °C in the furnace. To separate silicon and metals, the composition of HF/HNO3 solution and the immersion time were adjusted considering environmental aspects and cost. Under the selected conditions, panels from different manufacturers were tested, obtaining similar yields of recovered silicon but differences in the metal concentrations.

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. International Energy Agency Photovoltaic Power Systems Programme, Snapshot of Global PV Markets,2020

2. ©Fraunhofer ISE: Photovoltaics Report, Updated: 16 September 2020,2020

3. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper),2019

4. Global status of recycling waste solar panels: A review

5. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3