The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots

Author:

Burek Jan,Babiarz Robert,Buk JarosławORCID,Sułkowicz PawełORCID,Krupa Krzysztof

Abstract

Servicing aircraft engines sometimes requires manufacturing only a single piece of a given part. Manufacturing a turbine disc using traditional methods is uneconomical. It is necessary to use a different machining method recommended for small lot production. One of the proposed methods is WEDM (wire electrical discharge machining). The article presents the results of the research on finishing WEDM of Inconel 718 turbine disc fir tree slots. The influence of infeed, mean gap voltage, peak current, pulse off-time, and discharge energy on the shape accuracy, surface roughness, microcracks, and the white layer thickness were determined. Mathematical models were developed based on the DoE (Design of Experiment) analysis. The statistical significance of the models was verified with the ANOVA (Analysis of Variance) test. The machining parameters control methods that allow achieving the required shape accuracy, surface roughness, and surface layer condition were presented. The obtained surface roughness was Ra = 0.84 μm, the shape accuracy of the slot in the normal-to-feed direction was Δd = 0.009 μm, the profile shape accuracy was Δr = 0.033 μm, and the thickness of recast (white) layer was approximately 5 μm.

Publisher

MDPI AG

Subject

General Materials Science

Reference52 articles.

1. Hole Making by Electrical Discharge Machining (EDM) of γ-TiAl Intermetallic Alloys;Beranoagirre;Metals,2018

2. Analysis of EDM Drilling of Small Diameter Holes;Płodzień,2020

3. Electrical discharge machining of difficult to cut materials;Świercz;Arch. Mech. Eng.,2018

4. Experimental investigation of influence electrical discharge energy on the surface layer properties after EDM

5. Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3