Abstract
One of the materials that is used widely for wind turbine blade manufacturing are fiber-reinforced composites. Although glass fiber reinforcement is the most used in wind turbine blades, the use of carbon fiber allows larger blades to be manufactured due to their better mechanical characteristics. Some turbine manufacturers are using carbon fiber in the most critical parts of the blade design. The larger rotors are exposed to complex loading conditions in service. One of the most relevant structures on a wind turbine blade is the spar cap. It is usually manufactured by means of unidirectional laminates, and one of its major failures is the delamination. The determination of material features that influence delamination initiation and advance by appropriate testing is a fundamental topic for the study of composite delamination. The fracture behavior is studied across coupons of carbon fiber reinforcement epoxy laminates. Fifteen different test conditions have been analyzed. Fracture surfaces for different mode ratios have been explored using optical microscope and scanning electron microscope. Experimental results shown in the paper for critical fracture parameters agree with the theoretically expected values. Therefore, this experimental procedure is suitable for wind turbine blade material characterizing at the initial coupon-scale research level.
Funder
European Union Ministry of Turkey, National Agency of Turkey
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献