Impact of Layer Thickness and Storage Time on the Properties of 3D-Printed Dental Dies

Author:

Sabbah AyaORCID,Romanos Georgios,Delgado-Ruiz RafaelORCID

Abstract

The purpose of this study was to evaluate the effect of printing layer thickness on the repeatability and surface roughness of 3D-printed dies and detect the effect of layer thickness and storage time on the dimensional stability of 3D-printed dies. One stereolithography (STL) file of an upper molar prepared for a full ceramic crown was used to print three groups of dies: 25 µm, 50 µm, and 100 µm. Repeatability was evaluated by linear and area measurements with a digital caliper and a digital metrology microscope. Dimensional stability was analyzed at 3 weeks, 6 months, and 1 year of storage time. Surface roughness parameters were measured with a 3D confocal laser scanning microscope. Statistics were completed using one-way analysis of variance and Tukey’s post hoc tests, p < 0.05. Printing time decreased as layer thickness increased. All groups showed high repeatability and comparable surface roughness while showing differences in their linear dimensions and surface areas. At the 3 week storage interval, dimensional changes were observed in all groups. Within this experimental study’s constraints, it can be concluded that changing the 3D-printing layer thickness does not affect the repeatability or the surface roughness of the product; meanwhile, changes to the layer thickness and storage time influence the dimensional stability of 3D-printed dies.

Funder

Stony Brook university

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Annual Report: The Additive Manufacturing Center of Excellence www.amcoe.org

2. A Clinical Guide to Applied Dental Materials E-Book;Bonsor,2012

3. Applications of additive manufacturing in dentistry: A review

4. 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) Fourth Edition of Rapid Prototyping Fourth Edition;Chua,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3