Abstract
To implement fine-grained context recognition that is accurate and affordable for general households, we present a novel technique that integrates multiple image-based cognitive APIs and light-weight machine learning. Our key idea is to regard every image as a document by exploiting “tags” derived by multiple APIs. The aim of this paper is to compare API-based models’ performance and improve the recognition accuracy by preserving the affordability for general households. We present a novel method for further improving the recognition accuracy based on multiple cognitive APIs and four modules, fork integration, majority voting, score voting, and range voting.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献