Analytical Modelling and Optimization of a Piezoelectric Cantilever Energy Harvester with In-Span Attachment

Author:

Homayouni-Amlashi AbbasORCID,Mohand-Ousaid Abdenbi,Rakotondrabe MickyORCID

Abstract

In this paper, the location of masses and of a piezoelectric patch for energy harvesting reported onto a vibrating cantilever beam is studied and optimized. To this aim, a genetic algorithm is adapted and utilized to optimize the voltage amplitude generated by the piezoelectric patches by choosing attachment mass, attachment mass moment of inertia, attachment location, piezoelectric patch location and force location on the beam as parameters. While an analytical approach is proposed to evaluate the voltage amplitude, a multi-layer perceptron neural network is trained by the derived characteristic matrix to obtain an approximate function for natural frequencies based on the attachment parameters. The trained network is then used in the core of genetic algorithm to find the best optimization variables for any excitation frequency. Numerical simulation by COMSOL Multiphysics finite element software validates the calculated voltage by analytical approach. The optimization method successfully matches the natural frequency of the beam with the excitation frequency which therefore maximizes the output energy. On the other hand, the superiority of the optimized design over the conventional configuration in harvesting the energy at high frequency excitation is also approved.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3