Capturing Human Perceptual and Cognitive Activities via Event-Related Potentials Measured with Candle-Like Dry Microneedle Electrodes

Author:

Yoshida Yuri,Kawana Takumi,Hoshino Eiichi,Minagawa Yasuyo,Miki NorihisaORCID

Abstract

We demonstrate capture of event-related potentials (ERPs) using candle-like dry microneedle electrodes (CMEs). CMEs can record an electroencephalogram (EEG) even from hairy areas without any skin preparation, unlike conventional wet electrodes. In our previous research, we experimentally verified that CMEs can measure the spontaneous potential of EEG from the hairy occipital region without preparation with a signal-to-noise ratio as good as that of the conventional wet electrodes which require skin preparation. However, these results were based on frequency-based signals, which are relatively robust compared to noise contamination, and whether CMEs are sufficiently sensitive to capture finer signals remained unclear. Here, we first experimentally verified that CMEs can extract ERPs as good as conventional wet electrodes without preparation. In the auditory oddball tasks using pure tones, P300, which represent ERPs, was extracted with a signal-to-noise ratio as good as that of conventional wet electrodes. CMEs successfully captured perceptual activities. Then, we attempted to investigate cerebral cognitive activity using ERPs. In processing the vowel and prosody in auditory stimuli such as /itta/, /itte/, and /itta?/, laterality was observed that originated from the locations responsible for the process in near-infrared spectroscopy (NIRS) and magnetoencephalography experiments. We simultaneously measured ERPs with CMEs and NIRS in the oddball tasks using the three words. Laterality appeared in NIRS for six of 10 participants, although laterality was not clearly shown in the results, suggesting that EEGs have a limitation of poor spatial resolution. On the other hand, successful capturing of MMN and P300 using CMEs that do not require skin preparation may be readily applicable for real-time applications of human perceptual activities.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3