Analysis of the Binding of Analyte-Receptor in a Micro-Fluidic Channel for a Biosensor Based on Brownian Motion

Author:

Choi SunghakORCID,Lee Woo Il,Lee Gyu Hee,Yoo Yeong-Eun

Abstract

This study experimentally analyses the binding characteristics of analytes mixed in liquid samples flowing along a micro-channel to the receptor fixed on the wall of the micro-channel to provide design tools and data for a microfluidic-based biosensor. The binding or detection characteristics are analyzed experimentally by counting the number of analytes bound to the receptor, with sample analyte concentration, sample flow rate, and the position of the receptor along the micro-channel length as the main variables. A mathematical model is also proposed to predict the number of analytes transported and bound to the receptor based on a probability density function for Brownian motion. The coefficient in the mathematical model is obtained by using a dimensionless mathematical model and the experimental results. The coefficient remains valid for all different conditions of the sample analyte concentration, flow rate, and the position of the receptor, which implies the possibility of deriving a generalized model. Based on the mathematical model derived from mathematical and experimental analysis on the detection characteristics of the microfluidic-based biosensor depending on previously mentioned variables and the height of the micro-channel, this study suggests a design for a microfluidic-based biosensor by predicting the binding efficiency according to the channel height. The results show the binding efficiency increases as the flow rate decreases and as the receptor is placed closer to the sample-injecting inlet, but is unaffected by sample concentration.

Funder

Ministry of Science and ICT, South Korea

Korea Institute of Machinery and Materials

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3