Investigation on Traffic Carbon Emission Factor Based on Sensitivity and Uncertainty Analysis

Author:

Chen Jianan1,Yu Hao2,Xu Haocheng2,Lv Qiang2,Zhu Zongqiang2,Chen Hao1,Zhao Feiyang1,Yu Wenbin1

Affiliation:

1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China

2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

Abstract

The premise for formulating effective emission control strategies is to accurately and reasonably evaluate the actual emission level of vehicles. Firstly, the active subspace method is applied to set up a low-dimensional model of the relationship between CO2 emission and multivariate vehicle driving data, in which the vehicle specific power (VSP) is identified as the most significant factor on the CO2 emission factor, followed by speed. Additionally, acceleration and exhaust temperature had the least impact. It is inferred that the changes in data sampling transform the establishment of subspace matrices, affecting the calculation of eigenvector components and the fitting of the final quadratic response surface, so that the emission sensitivity and final fitting accuracy are impressionable by the data distribution form. For the VSP, the best fitting result can be obtained when the VSP conforms to a uniform distribution. Moreover, the Bayesian linear regression method accounts for fitting parameters between the VSP and CO2 emission factor with uncertainties derived from heteroscedastic measurement errors, and the values and distributions of the intercept and slope α and β are obtained. In general, the high-resolution inventory of the carbon emission factor of the tested vehicle is set up via systematically analyzing it, which brings a bright view of data processing in further counting the carbon footprint.

Funder

Open Funds of Chongqing Key Laboratory of Vehicle Emission and Economizing Energy

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zero-Carbon Vehicles and Power Generation;Sustainability;2024-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3