Analysis of Hydrogen Combustion in a Spark Ignition Research Engine with a Barrier Discharge Igniter

Author:

Ricci Federico1ORCID,Zembi Jacopo1ORCID,Avana Massimiliano1,Grimaldi Carlo Nazareno1ORCID,Battistoni Michele1ORCID,Papi Stefano2ORCID

Affiliation:

1. Department of Engineering, University of Perugia, Via G. Duranti, 93, 06125 Perugia, Italy

2. Federal-Mogul Powertrain Italy, Via Della Scienza, 6/8, 41012 Carpi, Italy

Abstract

Hydrogen fuel is gaining particular attention in internal combustion engines. In addition to zero-carbon emissions, major advantages relate to its combustion characteristics, which allow a significant increase in thermal efficiency under ultra-lean operation and with very low NOx levels. The ignition system is one of the main technology enablers, as it determines the capability to control ultra-lean operations, avoid backfire phenomena, and/or reduce the risks of abnormal combustions. The latter results from hydrogen’s low ignition energy and it is associated with factors like high-temperature residuals, hot spots, and irregular spark plug discharge. The ACIS gen 2-Barrier Discharge Igniter excels in accelerating the initial flame growth speed by the generation of non-equilibrium low-temperature plasma, a strong ignition promoter for the combined action of kinetic and thermal effects. Moreover, its volumetric discharge facilitates combustion initiation on a wide region, in contrast to the localized ignition of traditional spark systems. In this work we present for the first time, to the best of our knowledge, experimental results showing the performance of a hydrogen engine with a low-temperature plasma discharge. Tests were conducted on a single-cylinder research engine, achieving ultra-lean conditions with cycle-to-cycle variability results below 2.5%. The analysis indicates that the H2-BDI combined solution is capable of accelerating the evolution of the flame front compared to traditional spark plugs, leading to a significant reduction in the cycle-to-cycle variability. A meticulous adjustment of the BDI control parameters further enhances igniter performance and contributes to a deeper understanding of the innovative approach proposed in this study.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

University of Perugia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3