Matching Characteristics of Refrigerant and Operating Parameters in Large Temperature Variation Heat Pump

Author:

Hu Hemin1,Wang Tao1,Zhang Fan1ORCID,Zhang Bing1,Qi Jian2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Characterizing the optimal operating parameters for a heat pump with a specific refrigerant is paramount, as it provides valuable guidance for refrigerant selection. The temperature mismatch between cold and hot fluids in the evaporator and condenser can lead to degraded thermal performance in heat pumps with large temperature variations. To address these two key issues, we selected several pure refrigerants with varying critical temperature levels for use in a large temperature variation heat pump configuration. The corresponding thermal performance was then investigated using the Ebsilon code under fixed temperature lift conditions as the operating temperature varied. It indicates that the maximum coefficient of performance (COP) is typically achieved when the deviation factors of temperature and pressure from their critical parameters fall within the ranges of 0.62~0.71 and 0.36~0.5, respectively. Our research recommends the binary refrigerant mixture of R152a/R1336mzz(z) (COP = 3.54) for the current operating conditions, as it significantly improves thermal performance compared to pure R1336mzz (z) (COP = 2.87) and R152a (COP = 3.01). Through research on the impact of the compositional ratio of R152a/R1336mzz(z) on the thermal performance of the heat pump, we found that that the optimal ratio of R1336mzz(z) component to R152a component is 0.5/0.5. This study offers valuable guidance for selecting the most suitable refrigerants for heat pumps in practical engineering design scenarios.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference48 articles.

1. World energy outlook and state of renewable energy: 10-Year evaluation;Yolcan;Innov. Green Dev.,2023

2. Achieving China’s ‘double carbon goals’, an analysis of the potential and cost of carbon capture in the resource-based area: Northwestern China;Liu;Energy,2024

3. Current status and correlation of fossil fuels consumption and greenhouse gas emissions;Siddik;Int. J. Energy Environ. Econ.,2021

4. Carbon neutrality: Toward a sustainable future;Chen;Innovation,2021

5. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies;Liu;Appl. Energy,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3