State-of-Charge Estimation for Lithium-Ion Battery Base on Adaptive Extended Sliding Innovation Filter

Author:

Wang Zhuo1,Shen Jinrong1,Xu Yang1

Affiliation:

1. College of Information Science and Enginnering, Hohai University, Changzhou 213200, China

Abstract

Accurate State of Charge (SoC) estimation is pivotal in advancing battery technology. In order to enhance the precision of SoC estimation, this study introduces the 2RC equivalent circuit model for lithium batteries. The Adaptive Extended Sliding Innovation Filter (AESIF) algorithm merges the model’s predictive outcomes with observation results. However, further improvements are required for this algorithm to perform optimally in strong noise environments. By adapting to observation noise and utilizing PID control to adjust the sliding boundary layer, the algorithm can accommodate varying noise levels and control interference fluctuations within specific limits. This study enhances the AESIF algorithm in these areas, proposing an improved version (IAESIF) to elevate performance in strong noise environments and improve overall estimation accuracy. Comprehensive tests were conducted under diverse operational conditions and temperatures, with results indicating that, compared to the EKF and the AESIF algorithm in strong noise environments, the IAESIF algorithm demonstrates improved noise adaptation and overall estimation accuracy.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3