Affiliation:
1. Department of Energy, Aalborg University, DK-9220 Aalborg, Denmark
Abstract
Turbine systems equipped with doubly fed induction generation (DFIG) are becoming increasingly vital in wind power generation, with the reliability of the devices serving as a pillar in the industrial sector. Thermal stress and lifetime assessment are fundamental indicators in this regard. This paper primarily addresses the thermal stress and lifespan of power semiconductor devices utilized in a DFIG grid-side converter (GSC) and rotor-side converter (RSC). PLECS (Piecewise Linear Electrical Circuit Simulation) is employed to validate the electrical and thermal stress of the power devices. Additionally, Ansys Icepak, a finite element analysis (FEA) software, is utilized to confirm temperature fluctuations under various operations. The power consumption and junction temperature of the power devices in the GSC and RSC of a 2 MW DFIG are compared. It is evident that the most stressed power semiconductor is the IGBT for the GSC with a temperature swing of 3.4 °C, while the diode in the RSC is the most stressed with a temperature swing of 10.1 °C. This paper also presents a lifetime model to estimate the lifespan of the power device based on the annual wind profile. By considering the annual mission profile, we observe that the lifetime of the back-to-back power converter is limited by the diode of the RSC, whose B10 lifetime is calculated at 15 years.
Reference27 articles.
1. Williams, R., Zhao, F., and Lee, J. (2023, June 29). Global Wind Energy Council. Web. Available online: https://gwec.net/wp-content/uploads/2023/03/GWR-2023_interactive.pdf.
2. Blaabjerg, F. (2018). Control of Power Electronic Converters and Systems, Academic Press.
3. Comparison of Wind Power Converter Reliability with Low-Speed and Medium-Speed Permanent-Magnet Synchronous Generators;Zhou;IEEE Trans. Ind. Electron.,2015
4. Ma, R., Yuan, S., Li, X., Guan, S., Yan, X., and Jia, J. (2024). Primary Frequency Regulation Strategy Based on Rotor Kinetic Energy of Double-Fed Induction Generator and Supercapacitor. Energies, 17.
5. Future on power electronics for wind turbine systems;Blaabjerg;IEEE Trans. Emerg. Sel. Top. Power Electron.,2013