Determination of Thin NiTi Wires’ Mechanical Properties during Phase Transformations

Author:

Hartwich JonaszORCID,Sławski SebastianORCID,Kciuk MarekORCID,Duda Sławomir

Abstract

The modern industrial and consumer applications in accordance with the concepts of Industry 4.0 and the Internet of Things are characterized by autonomy and self-sufficiency. This has led to an increase in the interest for the so-called smart materials, capable of combining the functionalities of sensors, actuators and, in some applications, control systems. An important group of smart materials are shape-memory alloys, among which nickel–titanium (NiTi) alloys are the most known. In this article, the influence of phase transformation on the mechanical properties of thin NiTi alloy wires was investigated. During the test, the influence of the heating currents on the displacement and the force generated by the thin NiTi wires were analyzed. The temperature of the wires during heating was measured by a thermographic camera. This study proved the maximum value of the wires’ displacement was related to the value of the heating current. During the research, the dependence of the transformation dynamics on the value of the heating currents was also proved. In addition, the influence of the surface inhomogeneity of the thin NiTi alloy wires on the accuracy of the thermographic measurements was analyzed. For the experimental research described in this article, we used the NiTi alloy whose trade name is Flexinol, produced by DYNALLOY (Inc. 2801 McGaw Ave. Irvine, CA, USA).

Funder

statutory funds from the Faculty of Mechanical Engineering of Silesian University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of the Bonding Force between the Thin NiTi Wire and 3D Printed Polymeric Matrix;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

2. Identification of nickel-titanium alloy material model parameters based on experimental research;Journal of Theoretical and Applied Mechanics;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3