Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings

Author:

Mohammed Ahmed SalihORCID,Asteris Panagiotis G.ORCID,Koopialipoor Mohammadreza,Alexakis Dimitrios E.ORCID,Lemonis Minas E.ORCID,Armaghani Danial Jahed

Abstract

In this research, a new machine-learning approach was proposed to evaluate the effects of eight input parameters (surface area, relative compactness, wall area, overall height, roof area, orientation, glazing area distribution, and glazing area) on two output parameters, namely, heating load (HL) and cooling load (CL), of the residential buildings. The association strength of each input parameter with each output was systematically investigated using a variety of basic statistical analysis tools to identify the most effective and important input variables. Then, different combinations of data were designed using the intelligent systems, and the best combination was selected, which included the most optimal input data for the development of stacking models. After that, various machine learning models, i.e., XGBoost, random forest, classification and regression tree, and M5 tree model, were applied and developed to predict HL and CL values of the energy performance of buildings. The mentioned techniques were also used as base techniques in the forms of stacking models. As a result, the XGboost-based model achieved a higher accuracy level (HL: coefficient of determination, R2 = 0.998; CL: R2 = 0.971) with a lower system error (HL: root mean square error, RMSE = 0.461; CL: RMSE = 1.607) than the other developed models in predicting both HL and CL values. Using new stacking-based techniques, this research was able to provide alternative solutions for predicting HL and CL parameters with appropriate accuracy and runtime.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3