Spatial Analysis as a Tool for Plant Population Conservation: A Case Study of Tamarix chinensis in the Yellow River Delta, China

Author:

Jiao Le,Zhang Yue,Sun Tao,Yang Wei,Shao Dongdong,Zhang PengORCID,Liu Qiang

Abstract

Saltcedar (Tamarix chinensis) is undergoing population declination and fragmentation due to climate change and human disturbance. The existing restoration strategies usually focus on improving the environmental conditions based on the environment–saltcedar relationship, while they ignore the role of spatial autocorrelation resulting from biological interaction and ecological processes. This oversight limits the efficiency and sustainability of the restoration. Here, we explored the spatial pattern of the saltcedar population in the Yellow River Delta, China, and its relationship with environmental factors, incorporating spatial autocorrelation. The plant and soil parameters were extracted by an airborne LiDAR system integrated with fixed soil environment measurements. The environment–saltcedar relationship incorporating spatial autocorrelation was evaluated with different regression models. Results showed that saltcedars aggregated at small scales (2–6 m), resulting from intraspecific facilitation and wind dispersal of seeds, while intraspecific competition was responsible for the random distribution at large scales (>10 m). The long-distance dispersal of seeds through water explained the significant positive spatial autocorrelation of saltcedars at distances up to 125 m. Consequently, resulting from intraspecific facilitation and seed dispersal, aggregation distribution and positive spatial autocorrelation within the saltcedar population improved the adaptability of saltcedar to environmental stress and thereby reduced the impact of environmental factors on the abundance of saltcedar.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3