Impact Analysis of H2O Fluxes and High-Frequency Meteorology–Water Quality: Multivariate Constrained Evaporation Modelling in Lake Wuliangsuhai, China

Author:

Sun Yue1,Shi Xiaohong123,Zhao Shengnan12,Li Guohua1,Sun Biao12,Huotari Jussi45ORCID

Affiliation:

1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China

3. State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayannur 014404, China

4. Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland

5. Masinotek Oy, FI-01510 Vantaa, Finland

Abstract

It is imperative to elucidate the process of evaporation in lakes, particularly those that are freshwater and are situated in middle and high latitudes. Based on one-year evaporation and high-frequency meteorological–water quality data of Lake Wuliangsuhai, this study analyzed the applicability and driving mechanism of the evaporation model. These dynamics are elucidated by the vorticity covariance method combined with the multivariate constrained evaporation Modelling method. The findings of this study revealed that (1) Lake evaporation (ET) is affected by multiple meteorological–water quality constraints, and the water quality indicators significantly related to ET are also affected by lake stratification. The coupled meteorological–water quality evaporation model can explain 93% of the evaporation change, which is 20% higher than the traditional meteorological Modelling evaporation model. (2) The nighttime ET is mainly affected by the thermal inertia lag, and the nighttime ET loss in Lake Wuliangsuhai accounts for 37.34% of the total evaporation, which cannot be ignored. (3) The actual water surface evaporation of the lake is much smaller than that measured by the pan conversion method and the regional empirical C formula method. The cumulative evaporation of Lake Wuliangsuhai from the non-freezing period to the early glacial period converted from meteorological station data is 1333.5 mm. The total evaporation in the non-freezing period is 2.77~3.68 × 108 m3, calculated by the lake area of 325 km2, while the evaporation calculated by the eddy station is 1.91 × 108 m3. In addition, the ET value measured by the cumulative C formula method was 424.2% higher than that of the model method and exceeded the storage capacity. Low-frequency and limited environmental index observations may lead to an overestimation of the real lake evaporation. Therefore, in situ, high-frequency meteorological–water quality monitoring and the eddy method deserve more consideration in future research on lake evaporation.

Funder

National Natural Science Foundation of China

the Inner Mongolia Autonomous Region Science and Technology Plan

Xiaohong Shi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3