Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends

Author:

Andryukov Boris G.,Besednova Natalya N.,Romashko Roman V.,Zaporozhets Tatyana S.,Efimov Timofey A.ORCID

Abstract

Infections pose a serious global public health problem and are a major cause of premature mortality worldwide. One of the most challenging objectives faced by modern medicine is timely and accurate laboratory-based diagnostics of infectious diseases. Being a key factor of timely initiation and success of treatment, it may potentially provide reduction in incidence of a disease, as well as prevent outbreak and spread of dangerous epidemics. The traditional methods of laboratory-based diagnostics of infectious diseases are quite time- and labor-consuming, require expensive equipment and qualified personnel, which restricts their use in case of limited resources. Over the past six decades, diagnostic technologies based on lateral flow immunoassay (LFIA) have been and remain true alternatives to modern laboratory analyzers and have been successfully used to quickly detect molecular ligands in biosubstrates to diagnose many infectious diseases and septic conditions. These devices are considered as simplified formats of modern biosensors. Recent advances in the development of label-free biosensor technologies have made them promising diagnostic tools that combine rapid pathogen indication, simplicity, user-friendliness, operational efficiency, accuracy, and cost effectiveness, with a trend towards creation of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up a broad range of applications of these analytical systems in clinical practice immediately at the site of medical care (point-of-care concept, POC). A great variety of modern nanoarchitectonics of biosensors are based on the use of a broad range of analytical and constructive strategies and identification of various regulatory and functional molecular markers associated with infectious bacterial pathogens. Resolution of the existing biosensing issues will provide rapid development of diagnostic biotechnologies.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3