Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Method

Author:

Shqair Mohammed,El-Ajou AhmadORCID,Nairat Mazen

Abstract

In this paper, a multi-energy groups of a neutron diffusion equations system is analytically solved by a residual power series method. The solution is generalized to consider three different geometries: slab, cylinder and sphere. Diffusion of two and four energy groups of neutrons is specifically analyzed through numerical calculation at certain boundary conditions. This study revels sufficient analytical description for radial flux distribution of multi-energy groups of neutron diffusion theory as well as determination of each nuclear reactor dimension in criticality case. The generated results are compatible with other different methods data. The generated results are practically efficient for neutron reactors dimension.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

1. Introduction to Nuclear Engineering;Lamarsh,1983

2. Analytical benchmark test set for criticality code verification

3. A Representation of the Exact Solution of Generalized Lane-Emden Equations Using a New Analytical Method

4. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

5. Construct and predicts solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, Journal of Computational;Abu Arqub;Physics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3