Abstract
In this manuscript, we define generalized Kincses-Totik type contractions within the context of metric space and consider the existence of a fixed point for such operators. Kincses-Totik type contractions extends the renowned Banach contraction mapping principle in different aspects. First, the continuity condition for the considered mapping is not required. Second, the contraction inequality contains all possible geometrical distances. Third, the contraction inequality is formulated for some iteration of the considered operator, instead of the dealing with the given operator. Fourth and last, the iteration number may vary for each point in the domain of the operator for which we look for a fixed point. Consequently, the proved results generalize the acknowledged results in the field, including the well-known theorems of Seghal, Kincses-Totik, and Banach-Caccioppoli. We present two illustrative examples to support our results. As an application, we consider an Ulam-stability of one of our results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference21 articles.
1. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales
2. Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont divers termes sont assujettis á satisfaire a une m eme équation différentielle du second ordre contenant un paramétre variable;Liouville;J. Math. Pure et Appl.,1837
3. Surless courbes define barles equations differentiate less;Poincaré;J. Math.,1886
4. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives;Picard;J. Math. Pures Appl.,1890
5. A Remark on a Fixed-Point Theorem for Iterated Mappings
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献