Three Dimensional Shape Reconstruction via Polarization Imaging and Deep Learning

Author:

Wu Xianyu1ORCID,Li Penghao1,Zhang Xin1,Chen Jiangtao1,Huang Feng1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Abstract

Deep-learning-based polarization 3D imaging techniques, which train networks in a data-driven manner, are capable of estimating a target’s surface normal distribution under passive lighting conditions. However, existing methods have limitations in restoring target texture details and accurately estimating surface normals. Information loss can occur in the fine-textured areas of the target during the reconstruction process, which can result in inaccurate normal estimation and reduce the overall reconstruction accuracy. The proposed method enables extraction of more comprehensive information, mitigates the loss of texture information during object reconstruction, enhances the accuracy of surface normal estimation, and facilitates more comprehensive and precise reconstruction of objects. The proposed networks optimize the polarization representation input by utilizing the Stokes-vector-based parameter, in addition to separated specular and diffuse reflection components. This approach reduces the impact of background noise, extracts more relevant polarization features of the target, and provides more accurate cues for restoration of surface normals. Experiments are performed using both the DeepSfP dataset and newly collected data. The results show that the proposed model can provide more accurate surface normal estimates. Compared to the UNet architecture-based method, the mean angular error is reduced by 19%, calculation time is reduced by 62%, and the model size is reduced by 11%.

Funder

Fuzhou University

Department of Education, Fujian Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3