Development of a Real-Time Pixel Array-Type Detector for Ultrahigh Dose-Rate Beams

Author:

Jang Young Jae12ORCID,Yang Tae Keun1,Kim Jeong Hwan1,Jang Hong Suk1,Jeong Jong Hwi3,Kim Kum Bae1ORCID,Kim Geun-Beom1,Park Seong Hee2ORCID,Choi Sang Hyoun1ORCID

Affiliation:

1. Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea

2. Department of Accelerator Science, Korea University, Sejong 30015, Republic of Korea

3. Center for ProtonTherapy, National Cancer Center, Goyang 10408, Republic of Korea

Abstract

Although research into ultrahigh dose-rate (UHDR) radiation therapy is ongoing, there is a significant lack of experimental measurements for two-dimensional (2D) dose-rate distributions. Additionally, conventional pixel-type detectors result in significant beam loss. In this study, we developed a pixel array-type detector with adjustable gaps and a data acquisition system to evaluate its effectiveness in measuring UHDR proton beams in real time. We measured a UHDR beam at the Korea Institute of Radiological and Medical Sciences using an MC-50 cyclotron, which produced a 45-MeV energy beam with a current range of 10–70 nA, to confirm the UHDR beam conditions. To minimize beam loss during measurement, we adjusted the gap and high voltage on the detector and determined the collection efficiency of the developed detector through Monte Carlo simulation and experimental measurements of the 2D dose-rate distribution. We also verified the accuracy of the real-time position measurement using the developed detector with a 226.29-MeV PBS beam at the National Cancer Center of the Republic of Korea. Our results indicate that, for a current of 70 nA with an energy beam of 45 MeV generated using the MC-50 cyclotron, the dose rate exceeded 300 Gy/s at the center of the beam, indicating UHDR conditions. Simulation and experimental measurements show that fixing the gap at 2 mm and the high voltage at 1000 V resulted in a less than 1% loss of collection efficiency when measuring UHDR beams. Furthermore, we achieved real-time measurements of the beam position with an accuracy of within 2% at five reference points. In conclusion, our study developed a beam monitoring system that can measure UHDR proton beams and confirmed the accuracy of the beam position and profile through real-time data transmission.

Funder

National Research Council of Science & Technology 350 (NST) grant by the Korea government

Korea Institute of Radiologi- 351 cal & Medical Sciences (KIRAMS) grant funded by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3